MakeItFrom.com
Menu (ESC)

AISI 347LN Stainless Steel vs. S43037 Stainless Steel

Both AISI 347LN stainless steel and S43037 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 347LN stainless steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
25
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
77
Shear Modulus, GPa 77
77
Shear Strength, MPa 400
260
Tensile Strength: Ultimate (UTS), MPa 590
410
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 460
510
Maximum Temperature: Mechanical, °C 940
880
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.3
Embodied Energy, MJ/kg 49
32
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
88
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.1
6.7
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0.0050 to 0.020
0 to 0.030
Chromium (Cr), % 17 to 19
16 to 19
Iron (Fe), % 64.3 to 73.7
77.9 to 83.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0.060 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0