MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. AZ31C Magnesium

AISI 348 stainless steel belongs to the iron alloys classification, while AZ31C magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is AZ31C magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 41
12
Fatigue Strength, MPa 200
150
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
17
Shear Strength, MPa 400
130
Tensile Strength: Ultimate (UTS), MPa 580
260
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Mechanical, °C 940
110
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
990
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 16
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
19
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
98

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.8
1.7
Embodied Carbon, kg CO2/kg material 3.7
23
Embodied Energy, MJ/kg 54
160
Embodied Water, L/kg 150
970

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
28
Resilience: Unit (Modulus of Resilience), kJ/m3 140
440
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
70
Strength to Weight: Axial, points 21
42
Strength to Weight: Bending, points 20
53
Thermal Diffusivity, mm2/s 4.2
74
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0
2.4 to 3.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 63.8 to 74
0
Magnesium (Mg), % 0
93.4 to 97
Manganese (Mn), % 0 to 2.0
0.15 to 1.0
Nickel (Ni), % 9.0 to 13
0 to 0.030
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0 to 0.1
0
Zinc (Zn), % 0
0.5 to 1.5
Residuals, % 0
0 to 0.3