MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. EN 1.0625 Steel

Both AISI 348 stainless steel and EN 1.0625 steel are iron alloys. They have 71% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is EN 1.0625 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
25
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 580
560
Tensile Strength: Yield (Proof), MPa 230
320

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
47
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.5
Embodied Energy, MJ/kg 54
20
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
270
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.2
13
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0 to 0.080
0.18 to 0.25
Chromium (Cr), % 17 to 19
0 to 0.3
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 63.8 to 74
96.6 to 99.02
Manganese (Mn), % 0 to 2.0
0.8 to 1.4
Molybdenum (Mo), % 0
0 to 0.12
Nickel (Ni), % 9.0 to 13
0 to 0.4
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.020
Tantalum (Ta), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030