MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. EN 1.1191 Steel

Both AISI 348 stainless steel and EN 1.1191 steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
16 to 17
Fatigue Strength, MPa 200
210 to 290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 400
380 to 430
Tensile Strength: Ultimate (UTS), MPa 580
630 to 700
Tensile Strength: Yield (Proof), MPa 230
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
48
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 54
19
Embodied Water, L/kg 150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260 to 510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
22 to 25
Strength to Weight: Bending, points 20
21 to 22
Thermal Diffusivity, mm2/s 4.2
13
Thermal Shock Resistance, points 13
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0.42 to 0.5
Chromium (Cr), % 17 to 19
0 to 0.4
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 74
97.3 to 99.08
Manganese (Mn), % 0 to 2.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 9.0 to 13
0 to 0.4
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Tantalum (Ta), % 0 to 0.1
0