MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. EN 1.4029 Stainless Steel

Both AISI 348 stainless steel and EN 1.4029 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
10 to 20
Fatigue Strength, MPa 200
270 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 400
440 to 550
Tensile Strength: Ultimate (UTS), MPa 580
700 to 930
Tensile Strength: Yield (Proof), MPa 230
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 480
390
Maximum Temperature: Mechanical, °C 940
750
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.0
Embodied Energy, MJ/kg 54
28
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
440 to 1410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
25 to 33
Strength to Weight: Bending, points 20
23 to 27
Thermal Diffusivity, mm2/s 4.2
8.1
Thermal Shock Resistance, points 13
26 to 34

Alloy Composition

Carbon (C), % 0 to 0.080
0.25 to 0.32
Chromium (Cr), % 17 to 19
12 to 13.5
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 74
82.8 to 87.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0.15 to 0.25
Tantalum (Ta), % 0 to 0.1
0