MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. EN 1.4983 Stainless Steel

Both AISI 348 stainless steel and EN 1.4983 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
40
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 580
630
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 480
520
Maximum Temperature: Mechanical, °C 940
940
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 54
56
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 18
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
200
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 13
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.080
0.040 to 0.080
Chromium (Cr), % 17 to 19
16 to 18
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 74
61.8 to 69.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 9.0 to 13
12 to 14
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
0.4 to 0.8