MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. CC496K Bronze

AISI 348 stainless steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
72
Elastic (Young's, Tensile) Modulus, GPa 200
97
Elongation at Break, % 41
8.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
36
Tensile Strength: Ultimate (UTS), MPa 580
210
Tensile Strength: Yield (Proof), MPa 230
99

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 940
140
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 16
52
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 3.7
3.3
Embodied Energy, MJ/kg 54
52
Embodied Water, L/kg 150
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
15
Resilience: Unit (Modulus of Resilience), kJ/m3 140
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 21
6.5
Strength to Weight: Bending, points 20
8.6
Thermal Diffusivity, mm2/s 4.2
17
Thermal Shock Resistance, points 13
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
72 to 79.5
Iron (Fe), % 63.8 to 74
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0 to 2.0
0 to 0.2
Nickel (Ni), % 9.0 to 13
0.5 to 2.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.1
Silicon (Si), % 0 to 0.75
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tantalum (Ta), % 0 to 0.1
0
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0