MakeItFrom.com
Menu (ESC)

AISI 348 Stainless Steel vs. S31060 Stainless Steel

Both AISI 348 stainless steel and S31060 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 348 stainless steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
46
Fatigue Strength, MPa 200
290
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 81
82
Shear Modulus, GPa 77
78
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 480
440
Maximum Temperature: Mechanical, °C 940
1080
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 54
48
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
260
Resilience: Unit (Modulus of Resilience), kJ/m3 140
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 13
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.080
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 17 to 19
22 to 24
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 74
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 9.0 to 13
10 to 12.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0