MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. AISI 303 Stainless Steel

Both AISI 348H stainless steel and AISI 303 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
40 to 51
Fatigue Strength, MPa 200
230 to 360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 400
430 to 470
Tensile Strength: Ultimate (UTS), MPa 580
600 to 690
Tensile Strength: Yield (Proof), MPa 230
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
410
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.0
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 18
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
240
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140 to 440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 4.1
4.4
Thermal Shock Resistance, points 13
13 to 15

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.15
Chromium (Cr), % 17 to 19
17 to 19
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
67.3 to 74.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 9.0 to 13
8.0 to 10
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.2
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0.15 to 0.35
Tantalum (Ta), % 0 to 0.1
0