MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. AISI 308L Stainless Steel

Both AISI 348H stainless steel and AISI 308L stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is AISI 308L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.28
0.28
Reduction in Area, % 51
46
Shear Modulus, GPa 77
78
Shear Strength, MPa 400
380
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
430
Maximum Temperature: Mechanical, °C 940
1010
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.2
Embodied Energy, MJ/kg 56
45
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 18
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
19.5 to 22
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
63.8 to 70.5
Manganese (Mn), % 0 to 2.0
1.0 to 2.5
Nickel (Ni), % 9.0 to 13
9.0 to 11
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0