MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. AISI 436 Stainless Steel

Both AISI 348H stainless steel and AISI 436 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
25
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
77
Shear Modulus, GPa 77
77
Shear Strength, MPa 400
320
Tensile Strength: Ultimate (UTS), MPa 580
500
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
460
Maximum Temperature: Mechanical, °C 940
880
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 56
38
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 18
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.1
6.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.12
Chromium (Cr), % 17 to 19
16 to 18
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
77.8 to 83.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0.32 to 1.0
0 to 0.8
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0