MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. AISI 444 Stainless Steel

Both AISI 348H stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
83
Shear Modulus, GPa 77
78
Shear Strength, MPa 400
300
Tensile Strength: Ultimate (UTS), MPa 580
470
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
580
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
95
Resilience: Unit (Modulus of Resilience), kJ/m3 140
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.1
6.2
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.025
Chromium (Cr), % 17 to 19
17.5 to 19.5
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 9.0 to 13
0 to 1.0
Niobium (Nb), % 0.32 to 1.0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 0.8