MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 1.0644 Steel

Both AISI 348H stainless steel and EN 1.0644 steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
17
Fatigue Strength, MPa 200
380
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 580
690
Tensile Strength: Yield (Proof), MPa 230
570

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.8
Embodied Energy, MJ/kg 56
24
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0.040 to 0.1
0.16 to 0.22
Chromium (Cr), % 17 to 19
0 to 0.3
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 63.8 to 73.6
96.1 to 98.4
Manganese (Mn), % 0 to 2.0
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 9.0 to 13
0 to 0.4
Niobium (Nb), % 0.32 to 1.0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.035
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15