MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 1.4607 Stainless Steel

Both AISI 348H stainless steel and EN 1.4607 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
21
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 400
330
Tensile Strength: Ultimate (UTS), MPa 580
530
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
580
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
18
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 20
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.8
Embodied Energy, MJ/kg 56
40
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 18
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
91
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.1
4.9
Thermal Shock Resistance, points 13
19

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 17 to 19
18.5 to 20.5
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
75.6 to 81.4
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 9.0 to 13
0
Niobium (Nb), % 0.32 to 1.0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
0.15 to 0.8