MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 1.4931 Steel

Both AISI 348H stainless steel and EN 1.4931 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
17
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 580
810
Tensile Strength: Yield (Proof), MPa 230
620

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 940
600
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 20
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.9
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 18
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 4.1
6.5
Thermal Shock Resistance, points 13
22

Alloy Composition

Carbon (C), % 0.040 to 0.1
0.2 to 0.26
Chromium (Cr), % 17 to 19
11.3 to 12.2
Cobalt (Co), % 0 to 0.2
0
Iron (Fe), % 63.8 to 73.6
83.2 to 86.8
Manganese (Mn), % 0 to 2.0
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 9.0 to 13
0 to 1.0
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Tantalum (Ta), % 0 to 0.1
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35