MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 2.4642 Nickel

AISI 348H stainless steel belongs to the iron alloys classification, while EN 2.4642 nickel belongs to the nickel alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 2.4642 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 400
450
Tensile Strength: Ultimate (UTS), MPa 580
670
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 940
1010
Melting Completion (Liquidus), °C 1430
1360
Melting Onset (Solidus), °C 1390
1320
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
50
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.9
8.2
Embodied Energy, MJ/kg 56
120
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
3.1
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.040 to 0.1
0 to 0.050
Chromium (Cr), % 17 to 19
27 to 31
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 63.8 to 73.6
7.0 to 11
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 9.0 to 13
55.9 to 66
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0 to 0.1
0