MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. EN 2.4654 Nickel

AISI 348H stainless steel belongs to the iron alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
17
Fatigue Strength, MPa 200
460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
77
Shear Strength, MPa 400
770
Tensile Strength: Ultimate (UTS), MPa 580
1250
Tensile Strength: Yield (Proof), MPa 230
850

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 940
1000
Melting Completion (Liquidus), °C 1430
1390
Melting Onset (Solidus), °C 1390
1330
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 20
75
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.9
10
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
42
Strength to Weight: Bending, points 20
31
Thermal Diffusivity, mm2/s 4.1
3.3
Thermal Shock Resistance, points 13
37

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0.040 to 0.1
0.020 to 0.1
Chromium (Cr), % 17 to 19
18 to 21
Cobalt (Co), % 0 to 0.2
12 to 15
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 63.8 to 73.6
0 to 2.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 9.0 to 13
50.6 to 62.5
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
2.8 to 3.3
Zirconium (Zr), % 0
0.020 to 0.080