MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. CC499K Bronze

AISI 348H stainless steel belongs to the iron alloys classification, while CC499K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
73
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 580
260
Tensile Strength: Yield (Proof), MPa 230
120

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1390
920
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
73
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 20
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.9
3.1
Embodied Energy, MJ/kg 56
51
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
65
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.1
Strength to Weight: Bending, points 20
10
Thermal Diffusivity, mm2/s 4.1
22
Thermal Shock Resistance, points 13
9.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0 to 0.020
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
84 to 88
Iron (Fe), % 63.8 to 73.6
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0 to 0.6
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.040
Tantalum (Ta), % 0 to 0.1
0
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0