MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. C90200 Bronze

AISI 348H stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 580
260
Tensile Strength: Yield (Proof), MPa 230
110

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
62
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
13

Otherwise Unclassified Properties

Base Metal Price, % relative 20
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.9
3.3
Embodied Energy, MJ/kg 56
53
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
63
Resilience: Unit (Modulus of Resilience), kJ/m3 140
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.3
Strength to Weight: Bending, points 20
10
Thermal Diffusivity, mm2/s 4.1
19
Thermal Shock Resistance, points 13
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 63.8 to 73.6
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0 to 0.5
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tantalum (Ta), % 0 to 0.1
0
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6