MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. C92700 Bronze

AISI 348H stainless steel belongs to the iron alloys classification, while C92700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
9.1
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 79
77
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580
290
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1390
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 20
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.9
3.6
Embodied Energy, MJ/kg 56
58
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
22
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
9.1
Strength to Weight: Bending, points 20
11
Thermal Diffusivity, mm2/s 4.1
15
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 63.8 to 73.6
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 13
0 to 1.0
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tantalum (Ta), % 0 to 0.1
0
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.7