MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. N06455 Nickel

AISI 348H stainless steel belongs to the iron alloys classification, while N06455 nickel belongs to the nickel alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 40
47
Fatigue Strength, MPa 200
290
Poisson's Ratio 0.28
0.29
Rockwell B Hardness 79
90
Shear Modulus, GPa 77
82
Shear Strength, MPa 400
550
Tensile Strength: Ultimate (UTS), MPa 580
780
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 940
960
Melting Completion (Liquidus), °C 1430
1510
Melting Onset (Solidus), °C 1390
1450
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
65
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.9
12
Embodied Energy, MJ/kg 56
160
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
300
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
2.7
Thermal Shock Resistance, points 13
24

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.015
Chromium (Cr), % 17 to 19
14 to 18
Cobalt (Co), % 0 to 0.2
0 to 2.0
Iron (Fe), % 63.8 to 73.6
0 to 3.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 9.0 to 13
58.1 to 72
Niobium (Nb), % 0.32 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.080
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.7