MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. R30155 Cobalt

Both AISI 348H stainless steel and R30155 cobalt are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 40
34
Fatigue Strength, MPa 200
310
Poisson's Ratio 0.28
0.29
Reduction in Area, % 51
34
Shear Modulus, GPa 77
81
Shear Strength, MPa 400
570
Tensile Strength: Ultimate (UTS), MPa 580
850
Tensile Strength: Yield (Proof), MPa 230
390

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 500
570
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 20
80
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.9
9.7
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 150
300

Common Calculations

PREN (Pitting Resistance) 18
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 13
21

Alloy Composition

Carbon (C), % 0.040 to 0.1
0.080 to 0.16
Chromium (Cr), % 17 to 19
20 to 22.5
Cobalt (Co), % 0 to 0.2
18.5 to 21
Iron (Fe), % 63.8 to 73.6
24.3 to 36.2
Manganese (Mn), % 0 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 9.0 to 13
19 to 21
Niobium (Nb), % 0.32 to 1.0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0 to 0.1
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0