MakeItFrom.com
Menu (ESC)

AISI 348H Stainless Steel vs. S32520 Stainless Steel

Both AISI 348H stainless steel and S32520 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 348H stainless steel and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
28
Fatigue Strength, MPa 200
460
Poisson's Ratio 0.28
0.27
Reduction in Area, % 51
46
Shear Modulus, GPa 77
80
Shear Strength, MPa 400
560
Tensile Strength: Ultimate (UTS), MPa 580
860
Tensile Strength: Yield (Proof), MPa 230
630

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 500
450
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
4.0
Embodied Energy, MJ/kg 56
55
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 18
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
960
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 13
24

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 17 to 19
24 to 26
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0
0.5 to 2.0
Iron (Fe), % 63.8 to 73.6
57.3 to 66.8
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 9.0 to 13
5.5 to 8.0
Niobium (Nb), % 0.32 to 1.0
0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.020
Tantalum (Ta), % 0 to 0.1
0