MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. 356.0 Aluminum

AISI 384 stainless steel belongs to the iron alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
55 to 75
Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 480
160 to 240

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
150 to 170
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140 to 150

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.7
8.0
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1110

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 17
17 to 26
Strength to Weight: Bending, points 17
25 to 33
Thermal Diffusivity, mm2/s 4.3
64 to 71
Thermal Shock Resistance, points 11
7.6 to 11

Alloy Composition

Aluminum (Al), % 0
90.1 to 93.3
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 60.9 to 68
0 to 0.6
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.35
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15