MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. 7049A Aluminum

AISI 384 stainless steel belongs to the iron alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 480
580 to 590

Thermal Properties

Latent Heat of Fusion, J/g 290
370
Maximum Temperature: Mechanical, °C 910
200
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
430
Specific Heat Capacity, J/kg-K 480
850
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 20
10
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 3.7
8.2
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1100

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 17
52 to 53
Strength to Weight: Bending, points 17
50 to 51
Thermal Diffusivity, mm2/s 4.3
50
Thermal Shock Resistance, points 11
25

Alloy Composition

Aluminum (Al), % 0
84.6 to 89.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0.050 to 0.25
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 60.9 to 68
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15