MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. 710.0 Aluminum

AISI 384 stainless steel belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
75
Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 480
240 to 250

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 3.7
8.0
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1130

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 17
29
Thermal Diffusivity, mm2/s 4.3
53
Thermal Shock Resistance, points 11
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 60.9 to 68
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15