MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. 713.0 Aluminum

AISI 384 stainless steel belongs to the iron alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
74 to 75
Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 480
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
370
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 3.7
7.8
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 17
22 to 23
Strength to Weight: Bending, points 17
28 to 29
Thermal Diffusivity, mm2/s 4.3
57
Thermal Shock Resistance, points 11
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0 to 0.35
Copper (Cu), % 0
0.4 to 1.0
Iron (Fe), % 60.9 to 68
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.6
Nickel (Ni), % 17 to 19
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25