MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. A390.0 Aluminum

AISI 384 stainless steel belongs to the iron alloys classification, while A390.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is A390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 480
190 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
640
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
580
Melting Onset (Solidus), °C 1380
480
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
67

Otherwise Unclassified Properties

Base Metal Price, % relative 20
11
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.7
7.3
Embodied Energy, MJ/kg 52
140
Embodied Water, L/kg 150
950

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 17
19 to 30
Strength to Weight: Bending, points 17
27 to 36
Thermal Diffusivity, mm2/s 4.3
56
Thermal Shock Resistance, points 11
9.0 to 14

Alloy Composition

Aluminum (Al), % 0
75.3 to 79.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 60.9 to 68
0 to 0.5
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2