MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. C38500 Bronze

AISI 384 stainless steel belongs to the iron alloys classification, while C38500 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is C38500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
37
Tensile Strength: Ultimate (UTS), MPa 480
370

Thermal Properties

Latent Heat of Fusion, J/g 290
160
Maximum Temperature: Mechanical, °C 910
110
Melting Completion (Liquidus), °C 1420
890
Melting Onset (Solidus), °C 1380
880
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 20
22
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.7
2.6
Embodied Energy, MJ/kg 52
45
Embodied Water, L/kg 150
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
13
Strength to Weight: Bending, points 17
14
Thermal Diffusivity, mm2/s 4.3
40
Thermal Shock Resistance, points 11
12

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
55 to 59
Iron (Fe), % 60.9 to 68
0 to 0.35
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
36.7 to 42.5
Residuals, % 0
0 to 0.5