MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. C51900 Bronze

AISI 384 stainless steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 480
380 to 620

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
66
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 20
33
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.7
3.2
Embodied Energy, MJ/kg 52
51
Embodied Water, L/kg 150
360

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
12 to 19
Strength to Weight: Bending, points 17
13 to 18
Thermal Diffusivity, mm2/s 4.3
20
Thermal Shock Resistance, points 11
14 to 22

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
91.7 to 95
Iron (Fe), % 60.9 to 68
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.045
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5