MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. C86200 Bronze

AISI 384 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 480
710

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 910
160
Melting Completion (Liquidus), °C 1420
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.7
2.9
Embodied Energy, MJ/kg 52
49
Embodied Water, L/kg 150
340

Common Calculations

Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 60.9 to 68
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Nickel (Ni), % 17 to 19
0 to 1.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0