MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. AISI 316N Stainless Steel

Both AISI 403 stainless steel and AISI 316N stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16 to 25
9.0 to 39
Fatigue Strength, MPa 200 to 340
230 to 450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 340 to 480
420 to 690
Tensile Strength: Ultimate (UTS), MPa 530 to 780
620 to 1160
Tensile Strength: Yield (Proof), MPa 280 to 570
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 740
940
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 9.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
3.9
Embodied Energy, MJ/kg 27
53
Embodied Water, L/kg 99
150

Common Calculations

PREN (Pitting Resistance) 12
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
180 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 28
22 to 41
Strength to Weight: Bending, points 19 to 24
20 to 31
Thermal Diffusivity, mm2/s 7.6
4.1
Thermal Shock Resistance, points 20 to 29
14 to 26

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13
16 to 18
Iron (Fe), % 84.7 to 88.5
61.9 to 71.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.6
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030

Comparable Variants