MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. B535.0 Aluminum

AISI 403 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
65
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 16 to 25
10
Fatigue Strength, MPa 200 to 340
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 340 to 480
210
Tensile Strength: Ultimate (UTS), MPa 530 to 780
260
Tensile Strength: Yield (Proof), MPa 280 to 570
130

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 28
96
Thermal Expansion, µm/m-K 9.9
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
82

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 99
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
22
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19 to 28
28
Strength to Weight: Bending, points 19 to 24
35
Thermal Diffusivity, mm2/s 7.6
40
Thermal Shock Resistance, points 20 to 29
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 84.7 to 88.5
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15