MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. EN 1.4877 Stainless Steel

Both AISI 403 stainless steel and EN 1.4877 stainless steel are iron alloys. They have 53% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16 to 25
36
Fatigue Strength, MPa 200 to 340
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 340 to 480
420
Tensile Strength: Ultimate (UTS), MPa 530 to 780
630
Tensile Strength: Yield (Proof), MPa 280 to 570
200

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Corrosion, °C 390
560
Maximum Temperature: Mechanical, °C 740
1150
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
12
Thermal Expansion, µm/m-K 9.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
37
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.9
6.2
Embodied Energy, MJ/kg 27
89
Embodied Water, L/kg 99
220

Common Calculations

PREN (Pitting Resistance) 12
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
22
Strength to Weight: Bending, points 19 to 24
20
Thermal Diffusivity, mm2/s 7.6
3.2
Thermal Shock Resistance, points 20 to 29
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0 to 0.15
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 11.5 to 13
26 to 28
Iron (Fe), % 84.7 to 88.5
36.4 to 42.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.6
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.010