MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. EN 1.8201 Steel

Both AISI 403 stainless steel and EN 1.8201 steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 25
20
Fatigue Strength, MPa 200 to 340
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 340 to 480
390
Tensile Strength: Ultimate (UTS), MPa 530 to 780
630
Tensile Strength: Yield (Proof), MPa 280 to 570
450

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
450
Melting Completion (Liquidus), °C 1450
1500
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
40
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
7.0
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.5
Embodied Energy, MJ/kg 27
36
Embodied Water, L/kg 99
59

Common Calculations

PREN (Pitting Resistance) 12
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
22
Strength to Weight: Bending, points 19 to 24
20
Thermal Diffusivity, mm2/s 7.6
11
Thermal Shock Resistance, points 20 to 29
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.15
0.040 to 0.1
Chromium (Cr), % 11.5 to 13
1.9 to 2.6
Iron (Fe), % 84.7 to 88.5
93.6 to 96.2
Manganese (Mn), % 0 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3