MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. C26000 Brass

AISI 403 stainless steel belongs to the iron alloys classification, while C26000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 25
2.5 to 66
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 83
53 to 93
Shear Modulus, GPa 76
41
Shear Strength, MPa 340 to 480
230 to 390
Tensile Strength: Ultimate (UTS), MPa 530 to 780
320 to 680
Tensile Strength: Yield (Proof), MPa 280 to 570
110 to 570

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 740
140
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 9.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
45
Embodied Water, L/kg 99
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
6.1 to 420
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
51 to 1490
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 28
11 to 23
Strength to Weight: Bending, points 19 to 24
13 to 21
Thermal Diffusivity, mm2/s 7.6
38
Thermal Shock Resistance, points 20 to 29
11 to 23

Alloy Composition

Bismuth (Bi), % 0
0 to 0.0059
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 84.7 to 88.5
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
28.1 to 31.5
Residuals, % 0
0 to 0.3