MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. C64800 Bronze

AISI 403 stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 25
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 340 to 480
380
Tensile Strength: Ultimate (UTS), MPa 530 to 780
640
Tensile Strength: Yield (Proof), MPa 280 to 570
630

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 28
260
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
65
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
66

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
43
Embodied Water, L/kg 99
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
51
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19 to 28
20
Strength to Weight: Bending, points 19 to 24
19
Thermal Diffusivity, mm2/s 7.6
75
Thermal Shock Resistance, points 20 to 29
23

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 84.7 to 88.5
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.5
Silicon (Si), % 0 to 0.5
0.2 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5