MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. C93200 Bronze

AISI 403 stainless steel belongs to the iron alloys classification, while C93200 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 16 to 25
20
Fatigue Strength, MPa 200 to 340
110
Poisson's Ratio 0.28
0.35
Rockwell B Hardness 83
65
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 530 to 780
240
Tensile Strength: Yield (Proof), MPa 280 to 570
130

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 740
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 28
59
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
12
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.9
3.2
Embodied Energy, MJ/kg 27
52
Embodied Water, L/kg 99
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
40
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19 to 28
7.5
Strength to Weight: Bending, points 19 to 24
9.7
Thermal Diffusivity, mm2/s 7.6
18
Thermal Shock Resistance, points 20 to 29
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13
0
Copper (Cu), % 0
81 to 85
Iron (Fe), % 84.7 to 88.5
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0