MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. S32750 Stainless Steel

Both AISI 403 stainless steel and S32750 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16 to 25
17
Fatigue Strength, MPa 200 to 340
360
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 340 to 480
530
Tensile Strength: Ultimate (UTS), MPa 530 to 780
860
Tensile Strength: Yield (Proof), MPa 280 to 570
590

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 740
1100
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
4.1
Embodied Energy, MJ/kg 27
56
Embodied Water, L/kg 99
180

Common Calculations

PREN (Pitting Resistance) 12
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 28
31
Strength to Weight: Bending, points 19 to 24
26
Thermal Diffusivity, mm2/s 7.6
4.0
Thermal Shock Resistance, points 20 to 29
25

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 11.5 to 13
24 to 26
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 84.7 to 88.5
58.1 to 66.8
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0 to 0.6
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.020