MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. AISI 440B Stainless Steel

Both AISI 405 stainless steel and AISI 440B stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
3.0 to 18
Fatigue Strength, MPa 130
260 to 850
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 300
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 470
740 to 1930
Tensile Strength: Yield (Proof), MPa 200
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 390
390
Maximum Temperature: Mechanical, °C 820
870
Melting Completion (Liquidus), °C 1530
1480
Melting Onset (Solidus), °C 1480
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
23
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.2
Embodied Energy, MJ/kg 28
31
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
57 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
27 to 70
Strength to Weight: Bending, points 17
24 to 45
Thermal Diffusivity, mm2/s 8.1
6.1
Thermal Shock Resistance, points 16
27 to 70

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0.75 to 1.0
Chromium (Cr), % 11.5 to 14.5
16 to 18
Iron (Fe), % 82.5 to 88.4
78.2 to 83.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015