MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. EN 1.0060 Steel

Both AISI 405 stainless steel and EN 1.0060 steel are iron alloys. They have 85% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is EN 1.0060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
13
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 300
380
Tensile Strength: Ultimate (UTS), MPa 470
630
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 820
400
Melting Completion (Liquidus), °C 1530
1470
Melting Onset (Solidus), °C 1480
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
53
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.7
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.4
Embodied Energy, MJ/kg 28
18
Embodied Water, L/kg 100
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
70
Resilience: Unit (Modulus of Resilience), kJ/m3 100
250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 8.1
14
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Iron (Fe), % 82.5 to 88.4
99.876 to 100
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0 to 0.040
0 to 0.055
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.055