MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. EN AC-44400 Aluminum

AISI 405 stainless steel belongs to the iron alloys classification, while EN AC-44400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is EN AC-44400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
61
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22
4.1
Fatigue Strength, MPa 130
79
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 470
210
Tensile Strength: Yield (Proof), MPa 200
110

Thermal Properties

Latent Heat of Fusion, J/g 280
540
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1530
600
Melting Onset (Solidus), °C 1480
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 30
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.0
7.8
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
7.3
Resilience: Unit (Modulus of Resilience), kJ/m3 100
85
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 17
31
Thermal Diffusivity, mm2/s 8.1
60
Thermal Shock Resistance, points 16
9.8

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
87.1 to 92
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 82.5 to 88.4
0 to 0.65
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 0 to 0.6
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
8.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15