MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. C70700 Copper-nickel

AISI 405 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
73
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Shear Strength, MPa 300
220
Tensile Strength: Ultimate (UTS), MPa 470
320
Tensile Strength: Yield (Proof), MPa 200
110

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1530
1120
Melting Onset (Solidus), °C 1480
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
59
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
34
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
52
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
100
Resilience: Unit (Modulus of Resilience), kJ/m3 100
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
10
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 8.1
17
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 82.5 to 88.4
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 0 to 0.6
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5