MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. C84500 Brass

AISI 405 stainless steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
55
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 470
240
Tensile Strength: Yield (Proof), MPa 200
97

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 820
150
Melting Completion (Liquidus), °C 1530
980
Melting Onset (Solidus), °C 1480
840
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 30
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
16
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
54
Resilience: Unit (Modulus of Resilience), kJ/m3 100
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.7
Strength to Weight: Bending, points 17
9.8
Thermal Diffusivity, mm2/s 8.1
23
Thermal Shock Resistance, points 16
8.6

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 82.5 to 88.4
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7