MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. C87800 Brass

AISI 405 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
25
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 76
86
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 470
590
Tensile Strength: Yield (Proof), MPa 200
350

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1530
920
Melting Onset (Solidus), °C 1480
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 30
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 8.1
8.3
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Copper (Cu), % 0
80 to 84.2
Iron (Fe), % 82.5 to 88.4
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 0.6
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5