MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. 2618A Aluminum

AISI 409 stainless steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 24
4.5
Fatigue Strength, MPa 140
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 270
260
Tensile Strength: Ultimate (UTS), MPa 420
440
Tensile Strength: Yield (Proof), MPa 200
410

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 710
230
Melting Completion (Liquidus), °C 1450
670
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.0
8.4
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 94
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
19
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 15
41
Strength to Weight: Bending, points 16
44
Thermal Diffusivity, mm2/s 6.7
59
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 84.9 to 89.5
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Nickel (Ni), % 0 to 0.5
0.8 to 1.4
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.75
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15