MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. 520.0 Aluminum

AISI 409 stainless steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 24
14
Fatigue Strength, MPa 140
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Shear Strength, MPa 270
230
Tensile Strength: Ultimate (UTS), MPa 420
330
Tensile Strength: Yield (Proof), MPa 200
170

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 25
87
Thermal Expansion, µm/m-K 11
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
21
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
72

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.0
9.8
Embodied Energy, MJ/kg 28
160
Embodied Water, L/kg 94
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
39
Resilience: Unit (Modulus of Resilience), kJ/m3 100
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 15
35
Strength to Weight: Bending, points 16
41
Thermal Diffusivity, mm2/s 6.7
37
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 84.9 to 89.5
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.75
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15