MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. ASTM A369 Grade FP91

Both AISI 409 stainless steel and ASTM A369 grade FP91 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
19
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 420
670
Tensile Strength: Yield (Proof), MPa 200
460

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 710
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
37
Embodied Water, L/kg 94
88

Common Calculations

PREN (Pitting Resistance) 11
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
6.9
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.080
0.080 to 0.12
Chromium (Cr), % 10.5 to 11.7
8.0 to 9.5
Iron (Fe), % 84.9 to 89.5
87.3 to 90.3
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.75
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010