MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. AWS E110C-K4

Both AISI 409 stainless steel and AWS E110C-K4 are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is AWS E110C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 420
850
Tensile Strength: Yield (Proof), MPa 200
780

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
41
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
3.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.7
Embodied Energy, MJ/kg 28
23
Embodied Water, L/kg 94
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
140
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
30
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 15
25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 10.5 to 11.7
0.15 to 0.65
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 84.9 to 89.5
92.1 to 98.4
Manganese (Mn), % 0 to 1.0
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0 to 0.5
0.5 to 2.5
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.75
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5