MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. C90300 Bronze

AISI 409 stainless steel belongs to the iron alloys classification, while C90300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 420
330
Tensile Strength: Yield (Proof), MPa 200
150

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 25
75
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
12
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
33
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
56
Embodied Water, L/kg 94
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
59
Resilience: Unit (Modulus of Resilience), kJ/m3 100
110
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 15
11
Strength to Weight: Bending, points 16
12
Thermal Diffusivity, mm2/s 6.7
23
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 84.9 to 89.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Titanium (Ti), % 0 to 0.75
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6